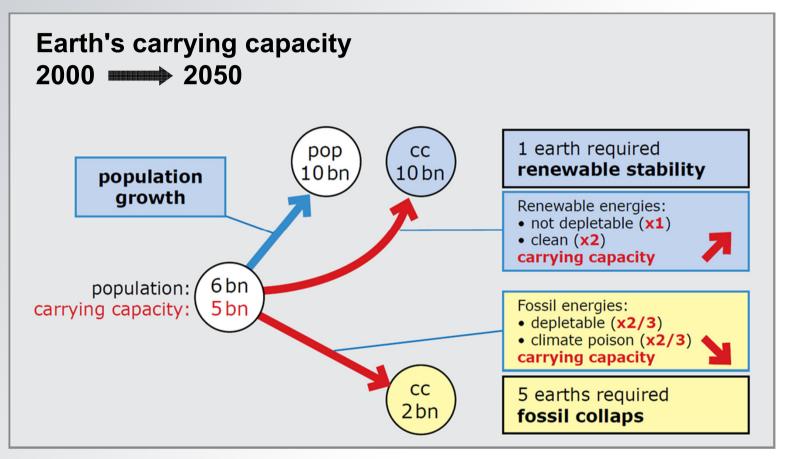


DESERTEC - Clean Power from Deserts

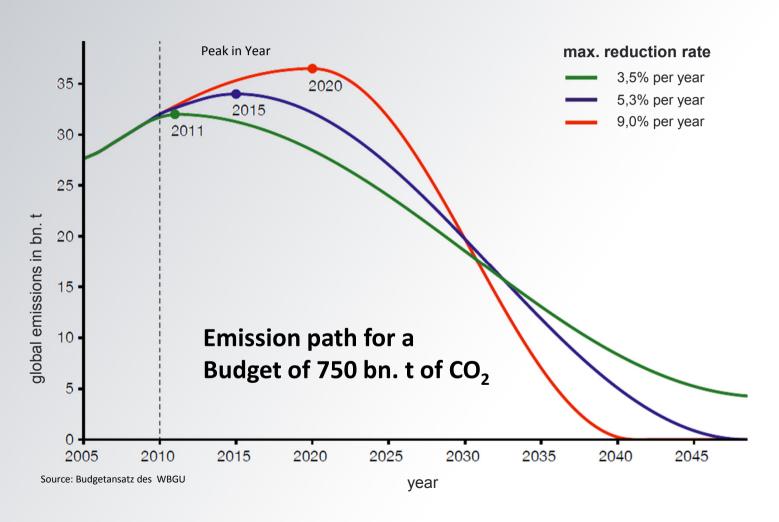
A concept for energy security and climate protection for a world with 10 billion people in 2050



Why DESERTEC?

In 2050, the world's population will need 3 planets

to cover it's demand for resources



growth in demand for energy, natural resources and more emissions

The later our emissions peak,

the more drastic the necessary reductions in CO₂

Challenges of a global energy supply

growing energy demand and the threat of climate change

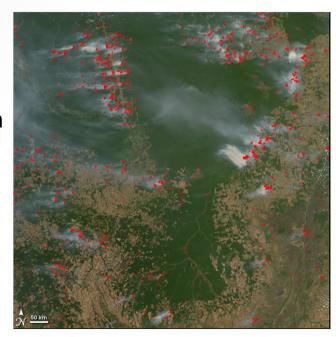
- 1. By 2050, the global demand for electricity will more than double
 - The world population will grow from 7 to between 9 & 10 billion people
 - Developing countries will catch up with industrialized states
- 2. Simultaneously, a fast and drastic reduction of CO2 is necessary, in order to prevent catastrophic climate change
 - At the current rate of growth, CO₂-emissions will breach the suggested limit of 750 metric tonnes of additional CO₂ in 20-25 years
 - At that point it becomes likely that earth warms by more than 2°C,
 reaching possible tipping points, leading to runaway climate change

Ethanol Production vs. Rainforest

Reduced CO₂ absorption & increased Ethanol Production

Soybean production in Brazil

1. CO₂ absorption


'Rainforests are responsible for 28% of the world's oxygen turnover'

2. Deforestation

- 2000-2004 increased deforestation
- Since 2004 slowed down, still a big problem

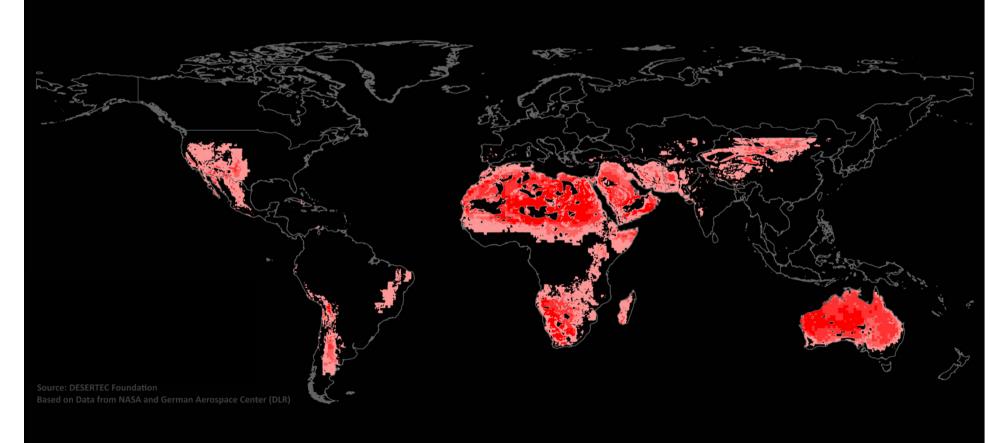
3. Population growth, a future risk

- Population growth
- Increased energy consumption per capita

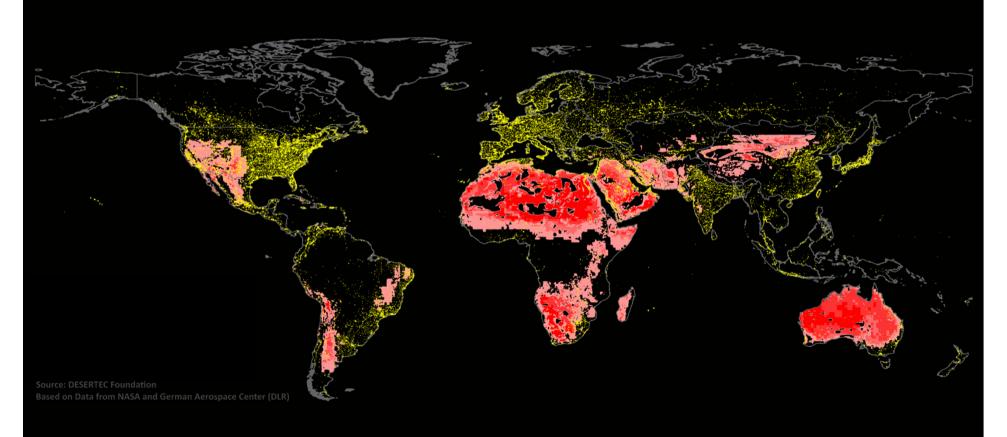
Electricity production by source in Brazil

conventional vs. renewable

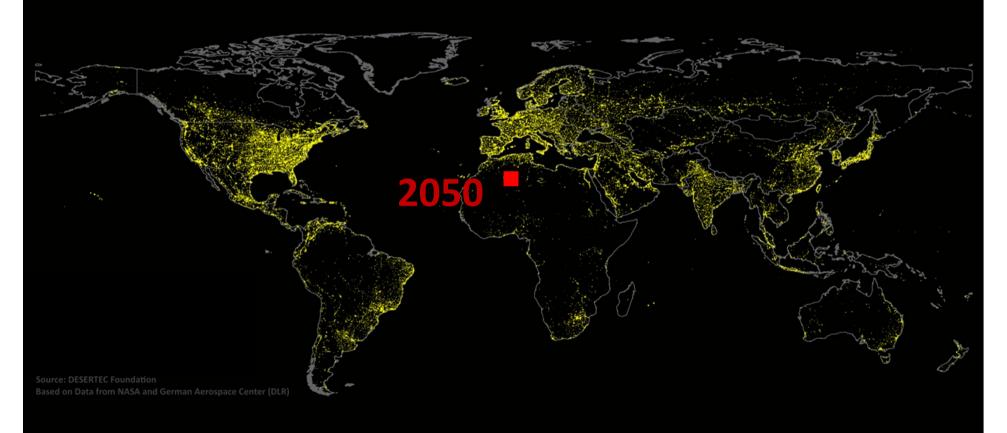
Production électrique	par source/Electricity	production b	v source
-----------------------	------------------------	--------------	----------


TWh	2000	2007	2008	2009	2010	tcam/ <i>aagr</i> 00/10	тс/ <i>GR</i> 09/10
Géothermie/ <i>Geothermal</i>	-	-	-	-	-	-	-
Éolien/ <i>Wind</i>	0,038	0,559	0,541	0,815	1,4	43,2 %	68,8 %
Biomasse/Biomass	7,6	17,9	19,8	23,1	24,7	12,5 %	6,8 %
dont biomasse solide/solid biomass share	7,6	17,9	19,8	23,1	24,7	12,5 %	6,8 %
dont biogaz/biogas share	-	-	-	-	-	-	-
dont biomasse liquide/liquid biomass share	-	-	-	-	-	-	-
dont déchets municipaux/municipal waste share	-	-	-	-	-	-	-
Déchets non renouvelables/							
Non-renewable waste	-	-	-	-	-	_	-
dont déchets industriels/industrial waste share	-	-	-	-	-	-	-
dont déchets municipaux/municipal waste share	-	-	-	-	-	-	-
Solaire/Solar	0,014	0,023	0,026	0,031	0,033	9,1 %	6,5 %
dont photovoltaïque /photovoltaic share	0,014	0,023	0,026	0,031	0,033	9,1 %	6,5 %
dont thermodynamique/CSP share	-	-	-	-	-	-	-
Hydraulique/Hydraulic	304,7	374,0	369,6	391,0	396,0	2,7 %	1,3 %
dont turbinage-pompage/pumped-storage share	-	-	-	-	-	-	-
Énergies marines/Marine energies	-	-	-	-	-	-	-
Nucléaire/Nuclear	6,0	12,4	14,0	13,0	14,5	9,2 %	12,0 %
Fossile/Fossil	30,8	41,0	59,4	38,7	58,7	6,6 %	51,5 %
Tot. renouvelable/renewable	312,3	392,5	389,9	414,9	422,1	3,1 %	1,7 %
Tot. conventionnelle/conventional	36,9	53,4	73,3	51,7	73,2	7,1 %	41,6 %
Total production	349,2	445,8	463,3	466,6	495,2	3,6 %	6,1 %
Part renouvelable/Renewable share	89,4 %	88,0 %	84,2 %	88,9 %	85,2 %		

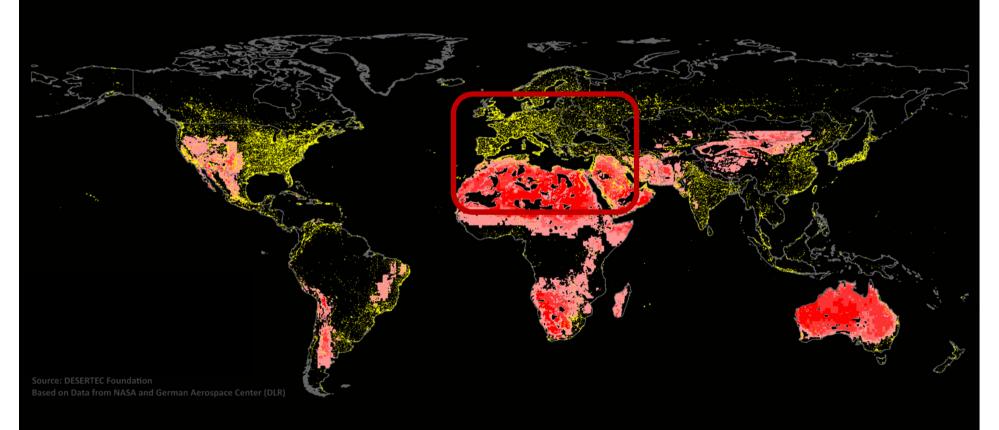
The DESERTEC Concept



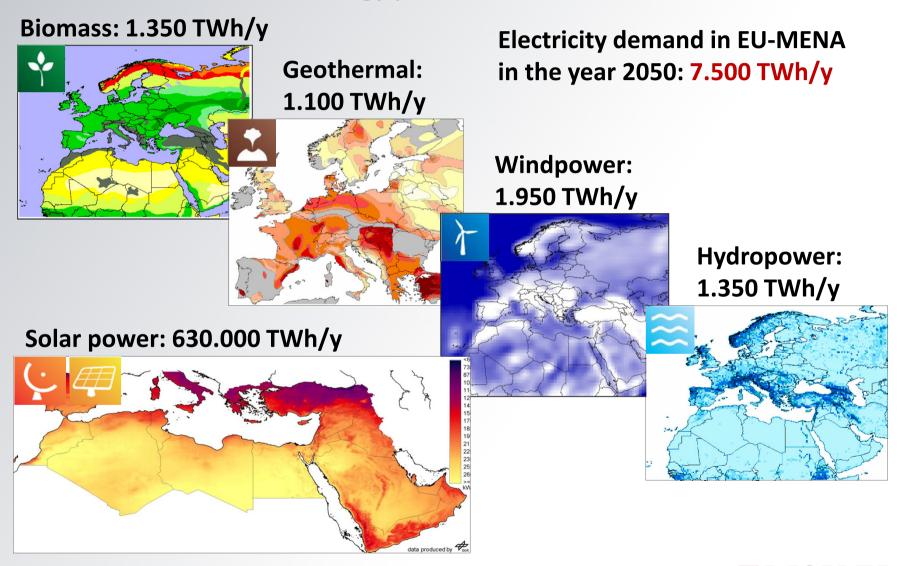
In six hours the worlds deserts receive more energy from the sun than humankind consumes within a year.



90% of the world's population lives within 3,000km of its deserts


A fraction of the deserts surface spread across the world would be enough to supply humankind's energy needs with clean energy.

DESERTEC Concept – Focus Region EU-MENA


(Europe, Middle East, Northern Africa)

The DESERTEC Concept for EU-MENA

DLR Studies: renewable energy potential in the EU and in MENA

The DESERTEC Concept for EU-MENA

The best sites offer the greatest benefit for climate protection

- For the same investment, the best sites can produce more clean electricity and therefore replace more conventional power
- Solar energy especially in the south, wind power in coastal areas, hydropower in the mountains, biomass in fertile central Europe, geothermal as available

Technical implementation

High-Voltage-DC-Transmission (HVDC)

Enables low-loss transmission of electricity over vast distances

- Only around 3% transmission losses per 1,000 km, narrower than HVAC lines and can be placed underground over large distances
- Since 1945, more than 130 HVDCtransmission lines have been built

Source: ABB

Source: Siemens

Example Yunnan-Guangdong in China:

- 5,000 MW hydropower
- 1,400 km distance
- 800 kV voltage

Solar-Thermal Power Plants

Concentrated sunlight delivers heat for a steam turbine

Parabolic Trough

Source: SkyFuel

Solar Tower

Source: Solar Two, DoE

Linear Fresnel

Source: Novatec Biosol

Parabolic Dish

Source: Eurodish

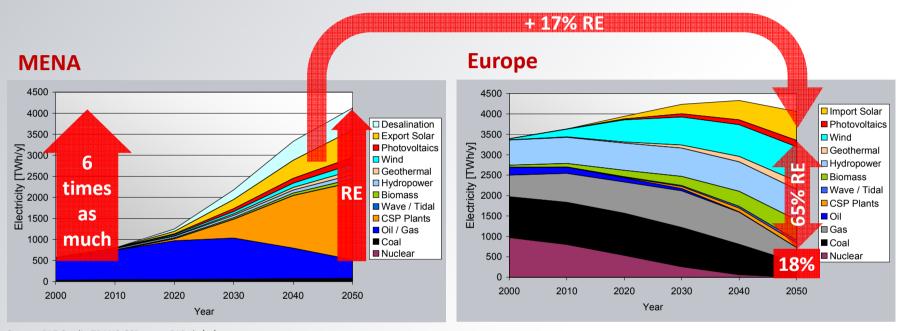
Solar-Thermal Power Plants

Through heat storage, solar power day and night according to demand

Heat storage tank with molten salt (50 MW | 7,5h)

Source: Solar Millennium

- In contrast to electricity, heat energy can be stored cost effectively in large amounts with low losses
- Therefore solar-thermal power plants are baseloadable and dispatchable
- They can balance out the fluctuations of photovoltaics and windpower



Cooperation between Europa and MENA region

Electricity production scenario for EU and MENA

DLR Studies: Clean power from deserts for local demand and export

Source: DLR Studie TRANS-CSP, www.DLR.de/tt/trans-csp

- MENA: Power from deserts mainly for local electricity demand & desalination
- Europe: Expansion of domestic renewable energies
- Dispatchable desert power complements the European electricity mix, enabling a higher proportion of PV & Wind, thus quickening the shift to a renewable energy supply

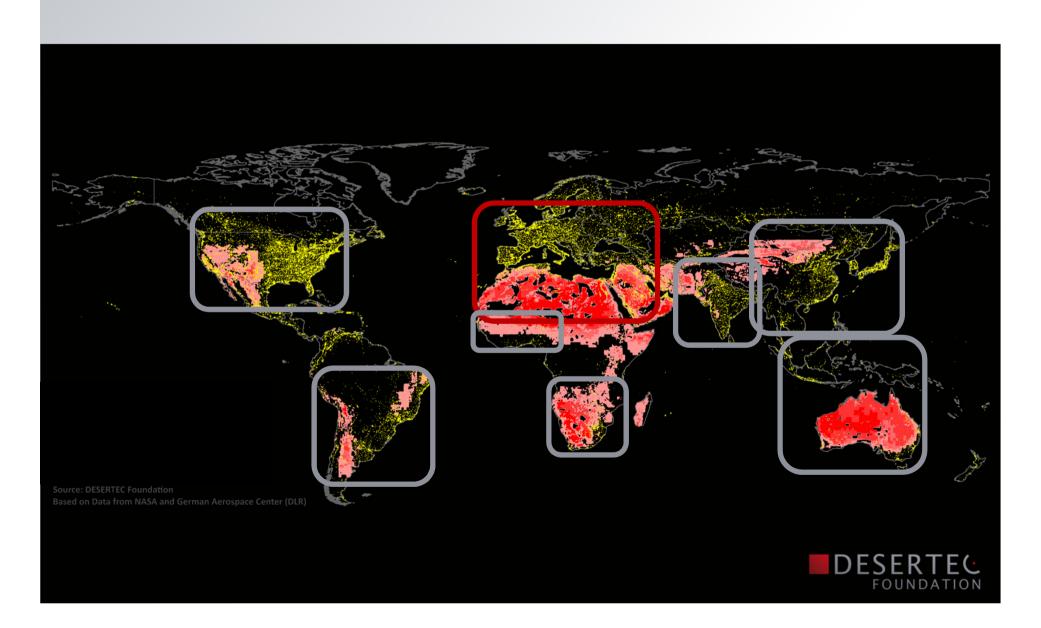
DESERTEC is a Win-Win-Strategy

Cooperation between Europe und MENA offers advantages for both

- ✓ Climate protection, reduced carbon emissions
- ✓ Higher energy security, more diverse and sustainable energy supply, less dependent on oil and gas
- ✓ More drinking water through desalination in desert regions.
- ✓ Socio-economic development (MENA):
 - Local set up of new, future-oriented industries
 - International investments and higher export revenue
 - Transfer of knowledge and technology
- ✓ International peacekeeping through cooperation and prevention of resource-related conflicts

The DESERTEC Concept...

- ✓ Uses all renewable energies where they are most abundant and integrates them into a transnational super grid.
- ✓ It is achievable today, because all technologies are available and reliable.
- ✓ It is a win-win-strategy for all involved parties and it can be implemented worldwide.



About us: DESERTEC Foundation

Mission of the DESERTEC Foundation:

World wide implementation of the DESERTEC-Concept

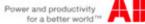
The DESERTEC Foundation

is a non-profit organisation aiming to shape a sustainable future

- Was founded 2009 by the Club of Rome & committed private individuals
- DESERTEC Concept developed together with German Aerospace Center (DLR)

The Mission & Our Projects

Implementation of the DESERTEC concept for energy security and climate protection for a world with 10 billion people in 2050


- In order to reach this goal, we founded the industrial initiative Dii GmbH for the Mediterranean region
- We founded the DESERTEC University Network, a group of 18 universities and research facilities from the EU-MENA region.
- Future focus: further desert regions, Knowledge sharing through DESERTEC
 University Network and Social-Networks including the DESERTEC Knowledge
 Platform

DESERTEC partners:

Supporters of the Foundation

www.DESERTEC.org

